Advanced Edge-Cloud Computing Framework for Automated PMU-Based Fault Localization in Distribution Networks

Author:

Sodin Denis,Rudež Urban,Mihelin Marko,Smolnikar MihaORCID,Čampa AndrejORCID

Abstract

The detection and localization of faults plays a huge role in every electric power system, be it a transmission network (TN) or a distribution network (DN), as it ensures quick power restoration and thus enhances the system’s reliability and availability. In this paper, a framework that supports phasor measurement unit (PMU)-based fault detection and localization is presented. Besides making the process of fault detecting, localizing and reporting to the control center fully automated, the aim was to make the framework viable also for DNs, which normally do not have dedicated fiber-optic connectivity at their disposal. The quality of service (QoS) for PMU data transmission, using the widespread long-term evolution (LTE) technology, was evaluated and the conclusions of the evaluation were used in the development of the proposed edge-cloud framework. The main advantages of the proposed framework can be summarized as: (a) fault detection is performed at the edge nodes, thus bypassing communication delay and availability issues, (b) potential packet losses are eliminated by temporally storing data at the edge nodes, (c) since the detection of faults is no longer centralized, but rather takes place locally at the edge, the amount of data transferred to the control center during the steady-state conditions of the network can be significantly reduced.

Funder

Horizon 2020

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3