Numerical and One-Dimensional Studies of Supersonic Ejectors for Refrigeration Application: The Significance of Wall Pressure Variation in the Converging Mixing Section

Author:

Djajadiwinata EldwinORCID,Sadek Shereef,Alaqel ShakerORCID,Orfi Jamel,Al-Ansary Hany

Abstract

This paper studies the pressure variation that exists on the converging mixing section wall of a supersonic ejector for refrigeration application. The objective is to show that the ejector one-dimensional model can be improved by considering this wall’s pressure variation which is typically assumed constant. Computational Fluid Dynamics (CFD) simulations were used to obtain the pressure variation on the aforementioned wall. Four different ejectors were simulated. An ejector was obtained from a published experimental work and used to validate the CFD simulations. The other three ejectors were a modification of the first ejector and used for the parametric study. The secondary mass flow rate, m˙s, was the main parameter to compare. The CFD validation results indicate that the transition SST turbulence model is better than the k-omega SST model in predicting the m˙s. The results of the ejector one-dimensional model were compared before and after incorporating the wall pressure variation. The comparison shows that the effect of the pressure variation is significant at certain operating conditions. Even around 2% change in the average pressure can give around 32% difference in the prediction of m˙s. For the least sensitive case, around 2% change in the average pressure can give around 7% difference in the prediction.

Funder

Deanship of Scientific Research, King Saud University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3