Evaluation of the Coherence of Polish Texts Using Neural Network Models

Author:

Telenyk SergiiORCID,Pogorilyy SergiyORCID,Kramov ArtemORCID

Abstract

Coherence evaluation of texts falls into a category of natural language processing tasks. The evaluation of texts’ coherence implies the estimation of their semantic and logical integrity; such a feature of a text can be utilized during the solving of multidisciplinary tasks (SEO analysis, medicine area, detection of fake texts, etc.). In this paper, different state-of-the-art coherence evaluation methods based on machine learning models have been analyzed. The investigation of the effectiveness of different methods for the coherence estimation of Polish texts has been performed. The impact of text’s features on the output coherence value has been analyzed using different approaches of a semantic similarity graph. Two neural networks based on LSTM layers and a pre-trained BERT model correspondingly have been designed and trained for the coherence estimation of input texts. The results obtained may indicate that both lexical and semantic components should be taken into account during the coherence evaluation of Polish documents; moreover, it is advisable to analyze corresponding documents in a sentence-by-sentence manner taking into account word order. According to the retrieved accuracy of the proposed neural networks, it can be concluded that suggested models may be used in order to solve typical coherence estimation tasks for a Polish corpus.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3