Dynamic Response Analysis of a Thin Plate with Partially Constrained Layer Damping Optimization under Moving Loads for Various Boundary Conditions

Author:

Qin Yun,Song QinghuaORCID,Liu ZhanqiangORCID,Shi Jiahao

Abstract

In this paper, the vibration analysis of a partially constrained layer damping plate subjected to moving loads is investigated. In addition, the first four order damping loss factor of the system is optimized with the location of partially constrained layer damping as a design variable. The equations of motion of a partially constrained layer damping plate are derived through the Lagrange equation based on first order shear deformation theory (FSDT). Next, using an extended Rayleigh–Ritz solution together with the penalty method expresses the unknown displacement terms, and the differential quadrature method is proposed to obtain the dynamic response of the system in the time domain. A multi-population genetic algorithm (MPGA) is employed to deal with the optimization of the damping loss factor of a partially constrained layer damping plate. To ensure the accuracy of the method presented in this study, the numerical results are comprehensively verified by experiments and open literature. The optimization results show that the damping loss factor increases when the position of the patch is close to the constraint boundary, and the best strategy is to optimize the low order damping loss factor of the system under moving loads. It is believed that the research results are of interest to engineering science.

Funder

National Natural Science Foundation of China

Natural Science Outstanding Youth Fund of Shandong Province

Key Research and Development Plan of Shandong Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3