The Investigation of Microstructure and Mechanical Behavior and the Fractographic Analysis of the Ti49.1Ni50.9 Alloy in States with Different Activation Deformation Volumes

Author:

Churakova AnnaORCID,Gunderov Dmitry,Kayumova Elina

Abstract

In this article, the microstructure and mechanical behavior of the Ti49.1Ni50.9 alloy with a high content of nickel in a coarse-grained state, obtained by quenching, ultrafine-grained (obtained through the equal-channel angular pressing (ECAP) method) and nanocrystalline (high pressure torsion (HPT) + annealing), were investigated using mechanical tensile tests at different temperatures. Mechanical tests at different strain rates for determining the parameter of strain rate sensitivity m were carried out. Analysis of m showed that with an increase in the test temperature, an increase in this parameter was observed for all studied states. In addition, this parameter was higher in the ultrafine-grained state than in the coarse-grained state. The activation deformation volume in the ultrafine-grained state was 2–3 times greater than in the coarse-grained state at similar tensile temperatures. Fractographic analysis of samples after mechanical tests was carried out. An increase in the test temperature led to a change in the nature of fracture from quasi-brittle–brittle (with small pits) at room temperature to ductile (with clear dimples) at elevated temperatures. Microstructural studies were carried out after the tensile tests at different temperatures, showing that at elevated test temperatures, the matrix was depleted in nickel with the formation of martensite twins.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. Titanium Nickelide: Structure and Properties, Russia;Khachin,1992

2. Shape Memory Alloys: Fundamentals, Modeling and Applications, Montreal: Ecole de Technologie Superieure (ETS);Brailovski,2003

3. Nanostructuring of metals by severe plastic deformation for advanced properties

4. Bulk Nanostructured Metallic Materials. Manufacture, Structure and Properties, Russia;Valiev,2007

5. Effect of Severe Plastic Deformation on the Behavior of Ti–Ni Shape Memory Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3