Robust Engineering for the Design of Resilient Manufacturing Systems

Author:

Mourtzis DimitrisORCID,Angelopoulos John,Panopoulos Nikos

Abstract

As the industrial requirements change rapidly due to the drastic evolution of technology, the necessity of quickly investigating potential system alternatives towards a more efficient manufacturing system design arises more intensely than ever. Production system simulation has proven to be a powerful tool for designing and evaluating a manufacturing system due to its low cost, quick analysis, low risk and meaningful insight that it may provide, improving the understanding of the influence of each component. In this research work, the design and evaluation of a real manufacturing system using Discrete Event Simulation (DES), based on real data obtained from the copper industry is presented. The current production system is modelled, and the real production data are analyzed and connected. The impact identification of the individual parameters on the response of the system is accomplished towards the selection of the proper configurations for near-optimum outcome. Further to that, different simulation scenarios based on the Design of Experiments (DOE) are studied towards the optimization of the production, under predefined product analogies.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. The World Bankhttps://data.worldbank.org/indicatorNV.IND.MANF.ZS?end=2019&start=2004&view=chart

2. The World Bankhttps://data.worldbank.org/indicator/NV.IND.MANF.CD

3. Real-Time Remote Maintenance Support Based on Augmented Reality (AR)

4. Cyber- Physical Systems and Education 4.0 –The Teaching Factory 4.0 Concept

5. Manufacturing Systems: Theory and Practice;Chryssolouris,2006

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3