F127/Cisplatin Microemulsions: In Vitro, In Vivo and Computational Studies

Author:

Sargazi SamanORCID,Hajinezhad Mohammad Reza,Barani MahmoodORCID,Mukhtar MahwashORCID,Rahdar AbbasORCID,Baino FrancescoORCID,Karimi Pouya,Pandey SadanandORCID

Abstract

The development of effective strategies for local administration of chemotherapeutic drugs, thus minimizing the adverse side effects to patients, is one of the key challenges in biomedicine and cancer research. This work reports the formulation and characterization of PluronicF127 microemulsions to enhance the bioavailability of Cisplatin (Cis). The size of Cis microemulsion was about 12.0 nm, as assessed by dynamic light scattering analysis. In vitro cytotoxic activity of free Cis and F127/Cis microemulsions were studied on malignant (C152 and MCF7) and normal (HUVEC) cells via tetrazolium (MTT) colorimetric assay. Cell morphology was also monitored. In vitro assessments revealed thatF127/Cis microemulsions induced cytotoxicity/morphological changes to a lesser extent than free Cis. Regarding in vivo experiments, F127/Cis microemulsions were injected intraperitoneally at 7 and 14 mg/kg doses into adult male Wistar rats to assess histologic and biochemical changes. In this case, the bulk Cis group caused severe histopathological changes and significant increases in serum liver enzymes and serum kidney function markers. The group treated with the 14 mg/kg dose of F127/Cis microemulsions also showed severe fatty changes and significant increases in serum liver enzymes, blood urea nitrogen, and creatinine levels. The group treated with the low dose of nano-Cis showed a significant increase in serum liver enzymes levels accompanied by mild fatty changes of the liver. Theoretical surveys were performed to get an understanding of the interplay between F127 and Cis. Results reveal that hydrogen bonding (HB) interactions with F127have an influence on the molecular properties of Cis and may playa role in the lower toxicity of F127/Cis in comparison to free Cis.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3