SPAER: Sparse Deep Convolutional Autoencoder Model to Extract Low Dimensional Imaging Biomarkers for Early Detection of Breast Cancer Using Dynamic Thermography

Author:

Yousefi BardiaORCID,Akbari HamedORCID,Hershman Michelle,Kawakita Satoru,Fernandes Henrique C.ORCID,Ibarra-Castanedo ClementeORCID,Ahadian Samad,Maldague Xavier P. V.ORCID

Abstract

Early diagnosis of breast cancer unequivocally improves the survival rate of patients and is crucial for disease treatment. With the current developments in infrared imaging, breast screening using dynamic thermography seems to be a great complementary method for clinical breast examination (CBE) prior to mammography. In this study, we propose a sparse deep convolutional autoencoder model named SPAER to extract low-dimensional deep thermomics to aid breast cancer diagnosis. The model receives multichannel, low-rank, approximated thermal bases as input images. SPAER provides a solution for high-dimensional deep learning features and selects the predominant basis matrix using matrix factorization techniques. The model has been evaluated using five state-of-the-art matrix factorization methods and 208 thermal breast cancer screening cases. The best accuracy was for non-negative matrix factorization (NMF)-SPAER + Clinical and NMF-SPAER for maintaining thermal heterogeneity, leading to finding symptomatic cases with accuracies of 78.2% (74.3–82.5%) and 77.7% (70.9–82.1%), respectively. SPAER showed significant robustness when tested for additive Gaussian noise cases (3–20% noise), evaluated by the signal-to-noise ratio (SNR). The results suggest high performance of SPAER for preserveing thermal heterogeneity, and it can be used as a noninvasive in vivo tool aiding CBE in the early detection of breast cancer.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3