Abstract
Wear is an important factor in the long-term success of total knee arthroplasty (TKA). Therefore, wear testing methods have become standard in implant research and development. In the EU, these are based on two simulation concepts, which are defined in standards ISO 14243-1 and 14243-3, differentiated by the control mode—force-controlled or displacement-controlled. The aim of this study was to compare the mechanical stresses within the different ISO concepts using a finite element model (the newest displacement-controlled norm from 2014 compared with force-controlled). The in silico model showed strong correlation with the experimental data (r > 0.8). The adapted force-controlled ISO showed higher mechanical stress during the gait cycle, which also might lead to higher wear rates (14243-1 (2009): 11.15 MPa, 10.15 MPa and 9.16 MPa). The displacement-controlled ISO led to higher mechanical stress because of the constraint at the end of the stance phase (14243-3: 20.59 MPa and 17.19 MPa). Future studies should analyse different inlay designs within the same ISO standards to guarantee comparability.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献