Instance Segmentation Based on Deep Convolutional Neural Networks and Transfer Learning for Unconstrained Psoriasis Skin Images

Author:

Lin Guo-Shiang,Lai Kuan-Ting,Syu Jian-Ming,Lin Jen-Yung,Chai Sin-Kuo

Abstract

In this paper, an efficient instance segmentation scheme based on deep convolutional neural networks is proposed to deal with unconstrained psoriasis images for computer-aided diagnosis. To achieve instance segmentation, the You Only Look At CoefficienTs (YOLACT) network composed of backbone, feature pyramid network (FPN), Protonet, and prediction head is used to deal with psoriasis images. The backbone network is used to extract feature maps from an image, and FPN is designed to generate multiscale feature maps for effectively classifying and localizing objects with multiple sizes. The prediction head is used to predict the classification information, bounding box information, and mask coefficients of objects. Some prototypes generated by Protonet are combined with mask coefficients to estimate the pixel-level shapes for objects. To achieve instance segmentation for unconstrained psoriasis images, YOLACT++ with a pretrained model is retrained via transfer learning. To evaluate the performance of the proposed scheme, unconstrained psoriasis images with different severity levels are collected for testing. As for subjective testing, the psoriasis regions and normal skin areas can be located and classified well. The four performance indices of the proposed scheme were higher than 93% after cross validation. About object localization, the Mean Average Precision (mAP) rates of the proposed scheme were at least 85.9% after cross validation. As for efficiency, the frames per second (FPS) rate of the proposed scheme reached up to 15. In addition, the F1_score and the execution speed of the proposed scheme were higher than those of the Mask Region-Based Convolutional Neural Networks (R-CNN)-based method. These results show that the proposed scheme based on YOLACT++ can not only detect psoriasis regions but also distinguish psoriasis pixels from background and normal skin pixels well. Furthermore, the proposed instance segmentation scheme outperforms the Mask R-CNN-based method for unconstrained psoriasis images.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3