Abstract
The acoustic emission (AE) technique is one of the most widely used in the field of structural monitoring. Its popularity mainly stems from the fact that it belongs to the category of non-destructive techniques (NDT) and allows the passive monitoring of structures. The technique employs piezoelectric sensors to measure the elastic ultrasonic wave that propagates in the material as a result of the crack formation’s abrupt release of energy. The recorded signal can be investigated to obtain information about the source crack, its position, and its typology (Mode I, Mode II). Over the years, many techniques have been developed for the localization, characterization, and quantification of damage from the study of acoustic emission. The onset time of the signal is an essential information item to be derived from waveform analysis. This information combined with the use of the triangulation technique allows for the identification of the crack location. In the literature, it is possible to find many methods to identify, with increasing accuracy, the onset time of the P-wave. Indeed, the precision of the onset time detection affects the accuracy of identifying the location of the crack. In this paper, two techniques for the definition of the onset time of acoustic emission signals are presented. The first method is based on the Akaike Information Criterion (AIC) while the second one relies on the use of artificial intelligence (AI). A recurrent convolutional neural network (R-CNN) designed for sound event detection (SED) is trained on three different datasets composed of seismic signals and acoustic emission signals to be tested on a real-world acoustic emission dataset. The new method allows taking advantage of the similarities between acoustic emissions, seismic signals, and sound signals, enhancing the accuracy in determining the onset time.
Funder
Marie Skłodowska-Curie Research
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference67 articles.
1. Two-years static and dynamic monitoring of the Santa Maria di Collemaggio basilica;Alaggio;Constr. Build. Mater.,2021
2. The recorded seismic response of the Santa Maria di Collemaggio basilica to low-intensity earthquakes;Aloisio;Int. J. Archit. Herit.,2021
3. Structural health monitoring of architectural heritage: From the past to the future advances;Clementi;Int. J. Archit. Herit.,2021
4. Di Benedetto, M., Asso, R., Cucuzza, R., Rosso, M., Masera, D., and Marano, G. (2021). Concrete Half-Joints: Corrosion Damage Analysis with Numerical Simulation, The International Federation for Structural Concrete.
5. Corrosion effects on the capacity and ductility of concrete half-joint bridges;Rosso;Constr. Build. Mater.,2022
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献