Abstract
The paper presents the results of microstructure tests of EN AC-46000 hypoeutectic Al–Si alloy with and without high-melting-point elements: chromium, molybdenum, vanadium, and tungsten. The above-mentioned elements were used individually or simultaneously in various combinations. The tested castings were made using two technologies: shell molding and high pressure die casting (HPDC). Using X-ray diffraction and microanalysis of the chemical composition an attempt to determine the phase structure of the tested alloy was made. It has been shown that the microstructure of the base alloy consists of dendrites of α(Al) solid solution and complex eutectic mixtures: ternary α(Al) + Al15(Fe,Mn)3Si2 + β(Si) and quaternary α(Al) + Al2Cu + AlSiCuFeMgMnNi + β(Si). High-melting point elements, regardless of the combination used, attach mainly to intermetallic phases rich in Fe and form the Al15(Fe,Mn,M)3Si2 phase, where M is any high melting point element or a combination of such elements. It has been shown that the area fraction of the above-mentioned phase increases with increasing content of high melting point elements. A greater area fraction of the Al15(Fe,Mn,M)3Si2 phase in the casting from the shell mold in relation to the high pressure die casting has been also found.
Subject
General Materials Science,Metals and Alloys
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献