Effect of Double Pulse Resistance Spot Welding Process on 15B22 Hot Stamped Boron Steel

Author:

Lee Hwa-Teng,Chang Yuan-Chih

Abstract

Double pulse resistance spot welding process by applying a second step welding current is a new pathway to alter the mechanical properties for advanced high strength steels. Herein, the resistance spot welding (RSW) of hot stamped boron steel 15B22 by one-step and two-step welding with different welding currents is investigated. The results of the tensile–shear test, size of the weld nugget, hardness distribution, microstructure, and failure mode of different welding parameters are analyzed. The weldment of the two-step RSW with a higher heat input exhibits a lower tensile–shear load and lower fracture energy when the size of the weld nugget is large. The microstructural study reveals the appearance of a partially melted zone and sub-critical heat affected zone in the weldment where the fracture readily occurred. Thus, the two-step RSW process weakens the strength of the sample, which is attributed to the partial softening in the weldment due to the higher heat input.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference32 articles.

1. A review on hot stamping

2. Automotive Lightweighting Using Advanced High-Strength Steels

3. Effects of fusion zone size and failure mode on peak load and energy absorption of advanced high strength steel spot welds under lap shear loading conditions

4. Metallurgical factors affecting failure mode of resistance spot welds;Pouranvari;Mater. Sci. Technol,2008

5. Advanced High-Strength Steels Application Guidelines V5;Keeler,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3