Abstract
Copper (Cu) has been recovered from speiss generated from top submerged lance furnace process, but it was reported that the leaching efficiency of Cu in sulfuric acid solution decreased with increasing antimony (Sb) content in the speiss. Scanning electron microscopy (SEM)–energy-dispersive X-ray spectroscopy (EDS) results indicate that Sb exists as CuSb alloy, which would retard the leaching of Cu. Therefore, hydrochloric acid leaching with aeration was performed to investigate the leaching behaviors of copper and antimony. The leaching efficiency of Cu increased with increasing agitation speed, temperature, HCl concentration, and the introduction ratio of O2, but also with decreasing pulp density. The leaching efficiency of Cu increased to more than 99% within 60 min in 1 mol/L HCl solution at 600 rpm and 90 °C with 10 g/L pulp density and 1000 cc/min O2. The leaching efficiency of Sb increased and then decreased in all 1 mol/L HCl leaching tests, and precipitate was observed in the leach solution, which was determined to be SbOCl or Sb2O3 by XRD analyses. However, in 2 mol/L–5 mol/L HCl solutions, the leaching efficiency of Sb increased to more than 95% (about 900 mg/L) and remained, so more than 2 mol/L HCl could stabilize Sb ion in the HCl solution.
Subject
General Materials Science,Metals and Alloys
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献