A Common Neuronal Ensemble in the Lateral Habenula Regulates Ciprofol Anesthesia in Mice

Author:

Zhou Kang12,Zhang Lin-Chen2,Zhu He1,Wen Bei1ORCID,Tang Jia-Li1,Yuan Ping-Chuan23,Zhu A-Fang1ORCID,Huang Yu-Guang1ORCID

Affiliation:

1. Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China

2. Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China

3. School of Pharmacy, Wannan Medical College, Wuhu 241000, China

Abstract

General anesthetics were first used over 170 years ago; however, the mechanisms of how general anesthetics induce loss of consciousness (LOC) remain unclear. Ciprofol, a novel intravenous anesthetic, has been developed by incorporating cyclopropyl into the chemical structure of propofol. This modification offers the benefits of rapid onset and minimal injection pain. Recent studies have revealed that the glutamatergic neurons of the lateral habenula (LHb) play a crucial role in modulating the LOC induced by propofol and sevoflurane. Nevertheless, the specific involvement of LHb in the anesthetic effects of ciprofol remains uncertain. Here, using targeted recombination in active populations (TRAP) combined with electroencephalogram/electromyography recordings and the righting reflex behavioral test, our study revealed that intravenous infusion of ciprofol for 1 h could lead to the induction of c-Fos expression in the LHb in mice. The combination of TRAP and gene ablation, aimed at selectively ablating ciprofol-activated neurons in the LHb, has been shown to facilitate the emergence of ciprofol anesthesia and decrease the proportion of delta waves during the emergence phase. Chemogenetic inhibition of these neurons produced a comparable effect, whereas chemogenetic activation resulted in the opposite outcome. Chemogenetic activation of ciprofol-activated neurons in the LHb delays the emergence of anesthesia and induces a deep hypnotic state during the emergence phase. Taken together, our findings suggest that LHb ciprofol-activated neurons modulate the state of consciousness and could potentially be targeted to manipulate consciousness during ciprofol anesthesia.

Funder

National Natural Science Foundation of China

Shuxiang Research Fund Project of Bethune Charitable Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3