The Membrane-Bound Notch Regulator Mnr Supports Notch Cleavage and Signaling Activity in Drosophila melanogaster

Author:

Nagel Anja C.ORCID,Müller Dominik,Zimmermann Mirjam,Preiss AnetteORCID

Abstract

The Notch signaling pathway is pivotal to cellular differentiation. Activation of this pathway involves proteolysis of the Notch receptor and the release of the biologically active Notch intracellular domain, acting as a transcriptional co-activator of Notch target genes. While the regulation of Notch signaling dynamics at the level of ligand–receptor interaction, endocytosis, and transcriptional regulation has been well studied, little is known about factors influencing Notch cleavage. We identified EP555 as a suppressor of the Notch antagonist Hairless (H). EP555 drives expression of CG32521 encoding membrane-bound proteins, which we accordingly rename membrane-bound Notch regulator (mnr). Within the signal-receiving cell, upregulation of Mnr stimulates Notch receptor activation, whereas a knockdown reduces it, without apparent influence on ligand–receptor interaction. We provide evidence that Mnr plays a role in γ-secretase-mediated intramembrane cleavage of the Notch receptor. As revealed by a fly-eye-based reporter system, γ-secretase activity is stimulated by the overexpression of Mnr, and is inhibited by its knockdown. We conclude that Mnr proteins support Notch signaling activity by fostering the cleavage of the Notch receptor. With Mnr, we identified a membrane-bound factor directly augmenting Notch intra-membrane processing, thereby acting as a positive regulator of Notch signaling activity.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Reference71 articles.

1. Notch and disease: A growing field;Louvi;Semin. Cell. Dev. Biol.,2012

2. Notch Signaling in development, tissue homeostasis, and disease;Siebel;Physiol. Rev.,2017

3. The Notch signalling system: Recent insights into the complexity of a conserved pathway;Guruharsha;Nat. Rev. Genet.,2012

4. Sex-linked inheritance in Drosophila;Morgan;Publs. Carnegie Instn.,1916

5. Notch signalling in context;Bray;Nat. Rev. Mol. Cell. Biol.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3