Self-Attention-Based Models for the Extraction of Molecular Interactions from Biological Texts

Author:

Srivastava Prashant,Bej Saptarshi,Yordanova KristinaORCID,Wolkenhauer OlafORCID

Abstract

For any molecule, network, or process of interest, keeping up with new publications on these is becoming increasingly difficult. For many cellular processes, the amount molecules and their interactions that need to be considered can be very large. Automated mining of publications can support large-scale molecular interaction maps and database curation. Text mining and Natural-Language-Processing (NLP)-based techniques are finding their applications in mining the biological literature, handling problems such as Named Entity Recognition (NER) and Relationship Extraction (RE). Both rule-based and Machine-Learning (ML)-based NLP approaches have been popular in this context, with multiple research and review articles examining the scope of such models in Biological Literature Mining (BLM). In this review article, we explore self-attention-based models, a special type of Neural-Network (NN)-based architecture that has recently revitalized the field of NLP, applied to biological texts. We cover self-attention models operating either at the sentence level or an abstract level, in the context of molecular interaction extraction, published from 2019 onwards. We conducted a comparative study of the models in terms of their architecture. Moreover, we also discuss some limitations in the field of BLM that identifies opportunities for the extraction of molecular interactions from biological text.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3