Pseudomonas fluorescens Showing Antifungal Activity against Macrophomina phaseolina, a Severe Pathogenic Fungus of Soybean, Produces Phenazine as the Main Active Metabolite

Author:

Castaldi StefanyORCID,Masi MarcoORCID,Sautua FranciscoORCID,Cimmino AlessioORCID,Isticato Rachele,Carmona MarceloORCID,Tuzi Angela,Evidente AntonioORCID

Abstract

Pseudomonas fluorescens 9 and Bacillus subtilis 54, proposed as biofungicides to control Macrophomina phaseolina, a dangerous pathogen of soybean and other crops, were grown in vitro to evaluate their ability to produce metabolites with antifungal activity. The aim of the manuscript was to identify the natural compounds responsible for their antifungal activity. Only the culture filtrates of P. fluorescens 9 showed strong antifungal activity against M. phaseolina. Its organic extract contained phenazine and mesaconic acid (1 and 2), whose antifungal activity was tested against M. phaseolina, as well as Cercospora nicotianae and Colletotrichum truncatum, other pathogens of soybean; however, only compound 1 exhibited activity. The antifungal activity of compound 1 was compared to phenazine-1-carboxylic acid (PCA, 3), 2-hydroxyphenazine (2-OH P, 4), and various semisynthetic phenazine nitro derivatives in order to perform a structure–activity relationship (SAR) study. PCA and phenazine exhibited the same percentage of growth inhibition in M. phaseolina and C. truncatum, whereas PCA (3) showed lower activity against C. nicotianae than phenazine. 2-Hydroxyphenazine (4) showed no antifungal activity against M. phaseolina. The results of the SAR study showed that electron attractor (COOH and NO2) or repulsor (OH) groups significantly affect the antifungal growth, as well as their α- or β-location on the phenazine ring. Both PCA and phenazine could be proposed as biopesticides to control the soybean pathogens M. phaseolina, C. nicotianae, and C. truncatum, and these results should prompt an investigation of their large-scale production and their suitable formulation for greenhouse and field applications.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3