Discovering the Ultimate Limits of Protein Secondary Structure Prediction

Author:

Ho Chia-Tzu,Huang Yu-Wei,Chen Teng-RueiORCID,Lo Chia-Hua,Lo Wei-ChengORCID

Abstract

Secondary structure prediction (SSP) of proteins is an important structural biology technique with many applications. There have been ~300 algorithms published in the past seven decades with fierce competition in accuracy. In the first 60 years, the accuracy of three-state SSP rose from ~56% to 81%; after that, it has long stayed at 81–86%. In the 1990s, the theoretical limit of three-state SSP accuracy had been estimated to be 88%. Thus, SSP is now generally considered not challenging or too challenging to improve. However, we found that the limit of three-state SSP might be underestimated. Besides, there is still much room for improving segment-based and eight-state SSPs, but the limits of these emerging topics have not been determined. This work performs large-scale sequence and structural analyses to estimate SSP accuracy limits and assess state-of-the-art SSP methods. The limit of three-state SSP is re-estimated to be ~92%, 4–5% higher than previously expected, indicating that SSP is still challenging. The estimated limit of eight-state SSP is 84–87%. Several proposals for improving future SSP algorithms are made based on our results. We hope that these findings will help move forward the development of SSP and all its applications.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3