Spatiotemporal Variations of Forest Vegetation Phenology and Its Response to Climate Change in Northeast China

Author:

Zheng Wenrui,Liu Yuqi,Yang XiguangORCID,Fan Wenyi

Abstract

Vegetation phenology is an important indicator of vegetation dynamics. The boreal forest ecosystem is the main part of terrestrial ecosystem in the Northern Hemisphere and plays an important role in global carbon balance. In this study, the dynamic threshold method combined with the ground-based phenology observation data was applied to extract the forest phenological parameters from MODIS NDVI time-series. Then, the spatiotemporal variation of forest phenology is discussed and the relationship between phenological change and climatic factors was concluded in the northeast China from 2011 to 2020. The results indicated that the distribution of the optimal extraction threshold has spatial heterogeneity, and the changing rate was 3% and 2% with 1° increase in latitude for SOS (the start of the growing season) and EOS (the end of the growing season). This research also notes that the SOS had an advanced trend at a rate of 0.29 d/a while the EOS was delayed by 0.47 d/a. This variation of phenology varied from different forest types. We also found that the preseason temperature played a major role in effecting the forest phenology. The temperature in winter of the previous year had a significant effect on SOS in current year. Temperature in autumn of the current year had a significant effect on EOS.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3