Abstract
Antenna distribution plays an important role for the performance gain in multiple-input–multiple-output (MIMO) radar target tracking. Since to meet the requirements of the low probability of interception, especially in a hostile environment, only a finite number of antennas can be activated at each step. This naturally leads to a performance-driven resource management problem. In this paper, a dynamic antenna selection strategy is proposed for tracking targets in colocated MIMO radar. The derived posterior Cramér–Rao lower bound (PCRLB) of joint direction-of-arrival (DOA) and Doppler estimate were chosen as the optimization criteria. Furthermore, in the deviation, the target radar cross-section (RCS) as the determining variable and the random variable are both discussed. The objective function is related to the antenna allocation and non-convex, and an efficient fast discrete particle swarm optimization (FDPSO) algorithm is proposed for the solution exploration. Additionally, a closed-loop feedback system is established, where the main idea is that the tracking information from the current time epoch is utilized to predict the PCRLB and to guide the antenna adjustment for the next time epoch. The simulation results demonstrate the performance improvement compared with the three fixed-antenna configurations. Moreover, the FDPSO can provide close-to-optimal solutions while satisfying the real-time demand.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献