Durability Studies of Solar Reflectors Used in Concentrating Solar Thermal Technologies under Corrosive Sulfurous Atmospheres

Author:

García-Segura Alejandro,Fernández-García Aránzazu,Buendía-Martínez Francisco,Ariza María,Sutter Florian,Valenzuela LoretoORCID

Abstract

Concentrating solar thermal (CST) technologies are a feasible and promising option to tackle worldwide energy problems. These solar facilities are sometimes located near industrial sites, where their main components—including concentrating solar reflectors—are prone to significant degradation caused by corrosive agents, especially in the presence of sulfurous atmospheres such as H2S and SO2. This paper focuses on analyzing the influence of sulfurous atmospheres on the durability of reflector materials used in CST technologies. To this end, accelerated aging tests were performed on the most commonly used materials found in solar reflectors (i.e., thick silvered glass and aluminum-based reflectors) by applying the same concentrations of H2S and SO2 under the same conditions of temperature and relative humidity. The results showed that the solar reflectors based on a silver reflective layer are significantly corroded by H2S atmospheres—several corrosion defects were found in the samples tested. However, those based on aluminum were barely affected by sulfurous environments in the conditions tested. Nonetheless, the study suggests that both reflector types are suitable candidates, depending on the purpose of the CST technology in question and the specific environmental conditions.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference38 articles.

1. Protermosolarwww.protermosolar.es

2. Technology Roadmap: Solar Thermal Electricityhttps://webstore.iea.org/technology-roadmap-solar-thermal-electricity-2014

3. A parabolic-trough collector for cleaner industrial process heat

4. Durability studies of solar reflectors: A review

5. Indoor Corrosion of Metals

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3