Author:
Jiang Xue-ting,Su Min,Li Rongrong
Abstract
With the boom of vehicles, especially the dramatic rise of private car ownership, in China, transport CO2 emission in China has surged. However, China has been taking the responsibility to cut down carbon emissions and to make positive efforts towards technology innovations in the transport sector. Breaking the link between transport carbon emissions and transport turnover capacity for the past decades should be analyzed. The paper tested the decoupling degree and ranked its potential determinants for every transport mode in consideration of specific transport mode characteristics. We extended the original Kaya identity to make the factor analysis more pertinent to the analysis of transport-related CO2 emissions. Besides, we combined the decomposition technique with decoupling analysis, decomposing the transport decoupling index into five distinct aspects to detect the key drivers of the decoupling of transport-related CO2 emissions from transport turnover volume. Moreover, we analyzed the relationship between transport-related CO2 emission and transport output, which also offers a novel perspective on transport and corresponding environmental research. The results uncovered that a weak decoupling state appeared between 1990–1995 and 2000–2010 in China’s transport sector. Transport energy efficiency exerted the most significant impact in accelerating the decoupling of transport-related CO2 emissions from turnover volume for all transport modes while the energy mix effect impeded the decoupling evolution in most observed periods. Railway transport turnover and rail locomotives shared rises boosted by decoupling evolution, while vehicular transport showed adverse effects. The rise of the transport facilities’ shares of railways, waterways, and airways also advanced the decoupling evolution. Hence, policies of switching travel modes and establishing a “smart growth” pattern for private vehicles should be considered.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献