Visual Quantitation of Copper Ions Based on a Microfluidic Particle Dam Reflecting the Cu(II)-Catalyzed Oxidative Damage of DNA

Author:

Cui Chenyu,Chen Ting-Hsuan

Abstract

Due to the use of copper water pipes and the discharge of industrial wastewater, contamination of copper ions in drinking water has become a severe hazard globally. To routinely check water safety on a daily basis, easy-to-use platforms for quantitative analysis of trace amounts of copper ions (Cu2+) in drinking water is needed. Here, we report microfluidic particle accumulation integrated with a Cu(II)-catalyzed Fenton reaction for visual and quantitative copper ion detection. Microparticles (MMPs) and polystyrene microparticles (PMPs) are connected via a single strand DNA, MB155. However, when Cu2+ is present, MB155 is cleaved by hydroxyl free radicals (•OH) produced from Cu2+/hydrogen peroxide (H2O2) Fenton reactions, causing an increased amount of free PMPs. To visually count them, the particle solution is loaded onto a microfluidic chip where free MMPs and MMPs–MB155–PMPs can be collected by the magnetic separator, while the free PMPs continue flowing until being accumulated at the particle dam. The results showed a good linear relationship between the trapping length of PMP accumulation and the Cu2+ concentration from 0 to 300 nM. A limit of detection (LOD) of 70.1 nM was achieved, which is approximately 449 times lower than the 2 × 103 μg·L−1 (~31.5 μM) required by the World Health Organization (WHO). Moreover, the results showed high selectivity and good tolerance to pH and hardness, indicating compatibility for detection in tap water, suggesting a potential platform for the routine monitoring of copper contamination in drinking water.

Funder

Research Grant Council

Innovation and Technology Commission

City University of Hong Kong

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3