Emerging Scientific Field Detection Using Citation Networks and Topic Models—A Case Study of the Nanocarbon Field

Author:

Sasaki HajimeORCID,Fugetsu Bunshi,Sakata Ichiro

Abstract

In fields with high science linkage, such as the nanocarbon field, trends in academic papers are particularly important for identifying future technological trends. The use of the number of citations allows us to predict the qualitative trends on a paper-by-paper basis. At the same time, it is necessary to be able to comprehensively discuss both qualitative and quantitative aspects in the subject area. This study aimed to detect emerging areas in the nanocarbon field using network models and topic models. It was possible to not only construct a model that exceeded an 86.2% F1 measure but also to focus on an area that could not be detected by the prediction model. This was accomplished by focusing on paper units, such as the research on the chemical synthesis of zigzag single-walled carbon nanotubes. Thus, it is possible to obtain knowledge that contributes to diversified R&D strategies and innovation policies by considering the emergence of new fields from multiple perspectives.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3