Comprehensive Laboratory Evaluation of Crack Resistance for an Asphalt Rubber Stress-Absorbing Membrane Interlayer (AR-SAMI)

Author:

Li Ping1,Peng Wenju12,Tian Shuaituan3,Liu Zhaohui1,Liu Junbin4,Liu Shende1

Affiliation:

1. School of Traffic & Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China

2. School of Civil Engineering, Hubei Engineering University, Xiaogan 432000, China

3. Beijing Super-Creative Technology Co., Ltd., Beijing 100094, China

4. Gezhouba Group Transportation Investment Co., Ltd., Wuhan 430030, China

Abstract

Reflective cracking is a common distress of semi-rigid base asphalt pavements and overlay pavement projects. An asphalt rubber stress-absorbing membrane interlayer (AR-SAMI) prepared by waste tires is an effective engineering solution for treating reflective cracking. This method can also reduce black pollution. However, there is no unified test method and index for crack resistance evaluation. In this work, AR-SAMIs with different air voids and gradations were investigated. A small beam bending test (BBT) at −10 °C and 15 °C, crack expansion SCB (CE-SCB) test, low-temperature SCB (LT-SCB) test, and Overlay Test (OT) were performed to evaluate the crack resistance of AR-SAMI comprehensively. Statistical analysis was also performed. Results showed that the crack resistance of AR-SAMI improved as the air voids decreased. The crack resistance of 10-A gradation with more fine aggregate was excellent. However, the AR-SAMI with more coarse aggregate had better crack extension resistance under the condition of pre-existing cracks. There are differences in the evaluation results of different test methods due to the various evaluation focus. The −10 °C BBT, CE-SCB, and OT were recommended to evaluate the crack resistance comprehensively. Research results can guide the evaluation method or index selection of crack resistance and the optimization of AR-SAMI mixture design under different working conditions.

Funder

National Key Research and Development Program

Guangxi Key Research and Development Program

Postgraduate Scientific Research Innovation Project of Hunan Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3