Evolutionary Game and Strategy Analysis of Carbon Emission Reduction in Supply Chain Based on System Dynamic Model

Author:

Guo Wenqiang1ORCID,Chen Siqi1ORCID,Lei Ming2ORCID

Affiliation:

1. School of Information Management, Xinjiang University of Finance and Economics, Urumchi 830012, China

2. Rural Revitalization Research Institute, Peking University, Beijing 100871, China

Abstract

At the 75th session of the United Nations General Assembly, China proposed the ambitious goal of achieving carbon peaking by 2030 and carbon neutrality by 2060. To investigate the impact of emission reduction behaviors of upstream and downstream enterprises in the supply chain, this paper focuses on the influencing factors of the supply chain enterprises’ emission reduction decision-making. The study aims to explore the emission reduction behaviors of these enterprises in the context of China’s carbon trading market. Using the theory of system dynamics, an evolutionary game model was developed and simulated using AnyLogic software. The simulation analyzed the effects of carbon price, subsidies, and punishment strategies on the emission reduction decisions of supply chain enterprises, providing insights into their behavioral impact. The results demonstrate that punishment, subsidy intensity, and carbon price changes all influence the emission reduction decisions of upstream and downstream enterprises. Suppliers are more sensitive to carbon price, while manufacturers are more sensitive to subsidy intensity. Additionally, the closer the equilibrium carbon price, subsidy, and market are, the shorter the time for the emission reduction probability of both enterprises to stabilize. Therefore, it is recommended that supply chain companies increase their awareness of environmental responsibility and enthusiasm for green innovation, actively respond to the carbon trading system, improve their internal subsidy system, and promote green technology innovation.

Funder

National Social Science Foundation of China

Xinjiang Social Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3