Affiliation:
1. Department of Energy (AAU Energy), Aalborg University, 9220 Aalborg, Denmark
Abstract
Microgrids create conditions for efficient use of integrated energy systems containing renewable energy sources. One of the major challenges in the control and operation of microgrids is managing the fluctuating renewable energy generation, as well as sudden load changes that can affect system frequency and voltage stability. To solve the above problems, hierarchical control techniques have received wide attention. At present, although some progress has been made in hierarchical control systems using classical control, machine learning-based approaches have shown promising features and performance in the control and operation management of microgrids. This paper reviews not only the application of classical control in hierarchical control systems in the last five years of references, but also the application of machine learning techniques. The survey also provides a comprehensive description of the use of different machine learning algorithms at different control levels, with a comparative analysis for their control methods, advantages and disadvantages, and implementation methods from multiple perspectives. The paper also presents the structure of primary and secondary control applications utilizing machine learning technology. In conclusion, it is highlighted that machine learning in microgrid hierarchical control can enhance control accuracy and address system optimization concerns. However, challenges, such as computational intensity, the need for stability analysis, and experimental validation, remain to be addressed.
Funder
Danida Fellowship Center and Ministry of Foreign Affairs of Denmark
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献