Concept Design of a High-Voltage Electrostatic Sanitizer to Prevent Spread of COVID-19 Coronavirus

Author:

Behjat VahidORCID,Rezaei-Zare Afshin,Fofana IssoufORCID,Naderian AliORCID

Abstract

In addition to public health measures, including social distancing, masking, cleaning, surface disinfection, etc., ventilation and air filtration can be a key component of a multi-pronged risk mitigation strategy against COVID-19 transmission indoors. Electrostatic precipitators (ESP) have already proved their high performance in fluid filtration, particularly in industrial applications, to control exhaust gas emissions and remove fine and superfine particles from the flowing gas, using high-voltage electrostatic fields and forces. In this contribution, a high-voltage electrostatic sanitizer (ESS), based on the electrostatic precipitation concept, is proposed as a supportive measure to reduce indoor air infection and prevent the spread of COVID-19 coronavirus. The finite element method (FEM) is used to model and simulate the proposed ESS, taking into account three main mechanisms involving in electrostatic sanitization, namely electrostatic field, airflow, and aerosol charging and tracing, which are mutually coupled to each other and occur simultaneously during the sanitization process. To consider the capability of the designed ESS in capturing superfine particles, functional parameters of the developed ESS, such as air velocity, electric potential, and space charge density, inside the ESS are investigated using the developed FEM model. Simulation results demonstrate the ability of the designed ESS in capturing aerosols containing coronavirus, precipitating suspended viral particles, and trapping them in oppositely charged electrode plates.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference109 articles.

1. Sensing Data Fusion for Enhanced Indoor Air Quality Monitoring

2. Investigation of an Indoor Air Quality Sensor for Asthma Management in Children

3. Coronavirus Disease (COVID-19) Outbreak: Rights, Roles and Responsibilities of Health Workers, Including Key Considerations for Occupational Safety and Health: Interim Guidance,2020

4. WHO Considers ‘Airborne Precautions’ for Medical Staff after Study Shows Coronavirus Can Survive in Air. 23 March 2020 https://www.cnbc.com/2020/03/16/who-considers-airborne-precautions-for-medical-staff-after-study-shows-coronavirus-can-survive-in-air.html

5. Infection Prevention and Control of Epidemic-and Pandemic-Prone Acute Respiratory Infections in Health Care,2014

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3