Affiliation:
1. Department of Civil, Constructional and Environmental Engineering (DICEA), Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
2. School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, 00138 Rome, Italy
Abstract
Accurate fuel mapping is crucial for effectively determining wildfire risk and implementing management strategies. The primary challenge in fuel type mapping lies in the need to develop accurate and efficient methods for identifying and categorizing the various combustible materials present in an area, often on a large scale. In response to this need, this paper presents a comprehensive approach that combines remote sensing data and Convolutional Neural Network (CNN) to discriminate between fire behavior fuel models. In particular, a CNN-based classification approach that leverages Sentinel-2 imagery is exploited to accurately classify fuel types into seven preliminary main classes (broadleaf, conifers, shrubs, grass, bare soil, urban areas, and water bodies). To further refine the fuel mapping results, subclasses were generated from the seven principles by using biomass and bioclimatic maps. These additional maps provide complementary information about vegetation density and climatic conditions, respectively. By incorporating this information, we align our fuel type classification with the widely used Standard Scott and Burgan (2005) fuel classification system. The results are highly promising, showcasing excellent CNN training performance with all three metrics—accuracy, recall, and F1 score—achieving an impressive 0.99%. Notably, the network exhibits exceptional accuracy in a test case conducted in the southern region of Sardinia, successfully identifying Burnable classes in previously unseen pixels: broadleaf at 0.99%, conifer at 0.79%, shrub at 0.76%, and grass at 0.84%. The proposed approach presents a valuable tool for enhancing fire management, contributing to more effective wildfire prevention and mitigation efforts. Thus, this tool could be leveraged by fire management agencies, policymakers, and researchers to improve the determination of wildfire risk and management.
Subject
Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献