Fire Effect and Performance of Bridge Pylon Columns under Construction

Author:

Li Yang1,Wang Zuocai12,Wang Changjian13,Zhang Yin1,Ma Hongsheng1,Liu Lili1

Affiliation:

1. College of Civil Engineering, Hefei University of Technology, Hefei 230009, China

2. Anhui Province Infrastructure Safety Inspection and Monitoring Engineering Laboratory, Hefei 230009, China

3. Anhui International Joint Research Center on Hydrogen Safety, Hefei 230009, China

Abstract

The fire effect and performance of bridge pylons under construction were investigated via an analysis conducted on two types of pylons with different wall thicknesses. Three fire scenarios, namely internal fire, external ring fire, and external side fire, were established for a 40 m high section of the bridge pylon under construction. The distribution of fire smoke and temperature was obtained using fire dynamics simulation software for different fire scenarios. In addition, a finite element simulation was performed using the thermal–mechanical coupling method to obtain the temperature, stress, and deformation of the columns. The simulation results demonstrate that the average temperature of the internal fire is higher. The chimney effect extends the height range of temperature influence. In the vertical direction, the temperature decrease curve for the internal fire follows a single negative exponential function, while the external fire adheres to a double negative exponential function. The thickness of the temperature influence in the bridge pylon is extended by heating to approximately 200 mm. The stress value considering the thermal expansion coefficient is nearly 27.5 times that without the expansion coefficient, while the deformation value increases by 1 to 8 times. In conclusion, the calculations of the coupled expansion coefficient are helpful in improving the fire safety of bridge pylons.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3