Studying the Effects of Wave Dissipation Structure and Multiple Size Diffusion Chambers on Explosion Shock Wave Propagation

Author:

Liu Wei1,Xu Xiangyun2,Yi Huahui3,Zhu Lifan4

Affiliation:

1. Institute of Engineering Safety and Disaster Prevention, Hohai University, Nanjing 210098, China

2. Institute of Defense Engineering, PLA Academy of Military Science, Beijing 100080, China

3. School of Weapon Science and Technology, Xi’an Technological University, Xi’an 710021, China

4. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China

Abstract

Explosion chambers are crucial to the technology used to prevent coal mine gas explosions. Investigating the shock wave propagation law at various coal mine tunnel cross-sections helps ensure mine safety. A self-built, highly explosive experimental setup was used to conduct empirical research on straight tubes, eight sizes of single-stage explosion chambers, and multi-stage tandem explosion chambers. Ansys Fluent numerical simulation software constructed five different tandem explosion chamber models. The wave dissipation efficiency of various types of explosion chambers was calculated, the propagation law and process of shock waves across multiple explosion chambers were examined, and the best size and type of explosion chambers were summarized to increase the wave dissipation efficiency of single-stage explosion chambers. Gun silencers inspired these models. The findings indicate that the three-stage tandem explosion chamber is the best diffusion tandem combination form, the 60° silencer-type explosion chamber is the best single-stage explosion chamber modification program, and the 500 mm × 500 mm × 200 mm explosion chamber is the best single-stage explosion chamber.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3