Affiliation:
1. School of Coal Engineering, Shanxi Datong University, Datong 037000, China
2. China Safety Science Journal Editorial Department, China Occupational Safety and Health Association, Beijing 100011, China
3. School of Emergency Management and Safety Engineering, China University of Mining & Technology, Beijing 100083, China
Abstract
The limit parameters of coal spontaneous combustion are important indicators for determining the risk of spontaneous combustion in coal seams. By analyzing the limit parameters of coal spontaneous combustion, the dangerous areas of coal spontaneous combustion can be determined, and corresponding measures can be taken to avoid the occurrence of fires. In order to accurately predict the limit parameters of coal spontaneous combustion, the prediction model of coal spontaneous combustion limit parameters based on GA-SVM was constructed by coupling genetic algorithm (GA) and support vector machine (SVM). Meanwhile, the GA and particle swarm optimization algorithm (PSO) were used to optimize the back propagation neural network (BPNN) to construct the GA-BPNN and PSO-BPNN prediction models, respectively. To predict the intensity of air leakage of the upper limit of coal spontaneous combustion in the goaf, the prediction results of the models were compared and analyzed using MAE, MAPE, RMSE, and R2 as the prediction performance evaluation indexes. The results show that the MAE of the GA-SVM model, the PSO-BPNN model, and the GA-BPNN model are 0.0960, 0.1086, and 0.1309, respectively; the MAPE is 2.46%, 3.11%, and 3.69%, respectively; the RMSE is 0.1180, 0.1789, and 0.2212, respectively; and the R2 is 0.9921, 0.9818, and 0.9722. The prediction results of the GA-SVM model are the most optimal in four evaluation indexes, followed by the PSO-BPNN and the GA-BPNN models. Applying each model to the prediction of minimum residual coal thickness in the goaf of a coal mine in Shanxi, the GA-SVM model has higher accuracy, which further verifies the universality and stability of the model and its suitability for the prediction of coal spontaneous combustion limit parameters.
Funder
Shanxi Basic Research Program (Free Exploration) Youth Project
Shanxi Province Higher Education Science and Technology Innovation Plan Project
Subject
Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献