FDS-Based Study of the Fire Performance of Huizhou Fire Seal Walls in Traditional Residential Buildings in Southern China

Author:

Wu Yunfa12,Hua Bin1,Chen Sarula1,Yang Jimo1

Affiliation:

1. School of Architecture and Planning, Anhui Jianzhu University, Hefei 230601, China

2. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China

Abstract

In the history of human civilization, traditional villages and buildings have been significantly threatened by fire. As an essential part of Huizhou traditional architecture, fire seal walls play a crucial role in preserving Huizhou architecture by effectively blocking the spread of fire. However, with economic and social development, the Huizhou fire seal wall’s original fire prevention function has been unable to meet the needs of modern fire protection. This study aims to explore the fire performance of different types of Huizhou fire seal walls to provide a reference guide for future fire protection, optimization, and transformation of traditional buildings. In this paper, 3D models of traditional buildings with fire seal walls were built with FDS, and the performance of the different kinds of fire seal walls was simulated under the influence of wind speeds, building spacing, and the height of the vertical ridge of the fire seal wall. The results showed that, under the same conditions, a fire seal wall with a single eave is superior to fire seal walls with quintuple eaves in terms of performance, and fire seal walls with quintuple eaves are superior to fire seal walls with triple eaves in the middle and late stages of a fire. In addition, wind speeds, building spacing, and the height of the vertical ridge have different effects on the fire performance of seal walls. Lower wind speeds can reduce the fire performance of fire seal walls, and no wind and higher wind speeds have no significant effect on the fire performance of fire seal walls, while increasing the height of the vertical ridge and fire spacings appropriately can improve the fire performance of fire seal walls. This study provides a reference guide for future fire protection, optimization, and transformation of Huizhou fire seal walls, which can help improve the fire safety of traditional buildings.

Funder

Natural Science Research Program of Anhui Colleges

Open Project Program of the China-Portugal Joint Laboratory of Cultural Heritage Conservation Science

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3