Integrated Simulation and Calibration Framework for Heating System Optimization

Author:

Djebko Kirill1ORCID,Weidner Daniel1,Waleska Marcel1,Krey Timo2,Rausch Sven2,Seipel Dietmar1,Puppe Frank1ORCID

Affiliation:

1. Chair of Computer Science VI: Artificial Intelligence and Knowledge Systems, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

2. ENER-IQ GmbH, Leightonstraße 3, 97074 Würzburg, Germany

Abstract

In a time where sustainability and CO2 efficiency are of ever-increasing importance, heating systems deserve special considerations. Despite well-functioning hardware, inefficiencies may arise when controller parameters are not well chosen. While monitoring systems could help to identify such issues, they lack improvement suggestions. One possible solution would be the use of digital twins; however, critical values such as the water consumption of the residents can often not be acquired for accurate models. To address this issue, coarse models can be employed to generate quantitative predictions, which can then be interpreted qualitatively to assess “better or worse” system behavior. In this paper, we present a simulation and calibration framework as well as a preprocessing module. These components can be run locally or deployed as containerized microservices and are easy to interface with existing data acquisition infrastructure. We evaluate the two main operating modes, namely automatic model calibration, using measured data, and the optimization of controller parameters. Our results show that using a coarse model of a real heating system and data augmentation through preprocessing, it is possible to achieve an acceptable fit of partially incomplete measured data, and that the calibrated model can subsequently be used to perform an optimization of the controller parameters in regard to the simulated boiler gas consumption.

Funder

German Federal Ministry for Economic Affairs and Climate Action

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3