Using Machine Learning on V2X Communications Data for VRU Collision Prediction

Author:

Ribeiro Bruno1ORCID,Nicolau Maria João2ORCID,Santos Alexandre1ORCID

Affiliation:

1. Department of Informatics, University of Minho, 4710-057 Braga, Portugal

2. Department of Information Systems, University of Minho, 4804-533 Guimarães, Portugal

Abstract

Intelligent Transportation Systems (ITSs) are systems that aim to provide innovative services for road users in order to improve traffic efficiency, mobility and safety. This aspect of safety is of utmost importance for Vulnerable Road Users (VRUs), as these users are typically more exposed to dangerous situations, and their vehicles also possess poorer safety mechanisms when in comparison to regular vehicles on the road. Implementing automatic safety solutions for VRU vehicles is challenging since they have high agility and it can be difficult to anticipate their behavior. However, if equipped with communication capabilities, the generated Vehicle-to-Anything (V2X) data can be leveraged by Machine Learning (ML) mechanisms in order to implement such automatic systems. This work proposes a VRU (motorcyclist) collision prediction system, utilizing stacked unidirectional Long Short-Term Memorys (LSTMs) on top of communication data that is generated using the VEINS simulation framework (coupling the Simulation of Urban MObility (SUMO) and Network Simulator 3 (ns-3) tools). The proposed system performed well in two different scenarios: in Scenario A, it predicted 96% of the collisions, averaging 4.53 s for Average Prediction Time (s) (APT) and with a Correct Decision Percentage (CDP) of 41% and 78 False Positives (FPs); in Scenario B, it predicted 95% of the collisions, with a 4.44 s APT, while the CDP was 43% with 68 FPs. The results show the effectiveness of the approach: using ML methods on V2X data allowed the prediction of most of the simulated accidents. Nonetheless, the presence of a relatively high number of FPs does not allow for the usage of automatic safety features (e.g., emergency breaking in the passenger vehicles); thus, collision avoidance must be achieved manually by the drivers.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference24 articles.

1. Commision, E. (2022, December 07). ITS & Vulnerable Road Users. Available online: https://transport.ec.europa.eu/transport-themes/intelligent-transport-systems/road/action-plan-and-directive/its-vulnerable-road-users_en.

2. (2022, September 20). Vehicle-to-Everything (V2X). Available online: https://www.abiresearch.com/market-research/product/7779722-vehicle-to-everything-v2x/.

3. Ribeiro, B., Nicolau, M.J., and Santos, A. (2022, January 5–8). Leveraging vehicular communications in automatic vrus accidents detection. Proceedings of the 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), Barcelona, Spain.

4. Survey on artificial intelligence (AI) techniques for vehicular ad-hoc networks (VANETs);Mchergui;Veh. Commun.,2021

5. Application on traffic flow prediction of machine learning in intelligent transportation;Li;Neural Comput. Appl.,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3