Optimization and Modeling of Citrobacter freundii AD119 Growth and 1,3-Propanediol Production Using Two-Step Statistical Experimental Design and Artificial Neural Networks

Author:

Drożdżyńska Agnieszka1,Wawrzyniak Jolanta2ORCID,Kubiak Piotr1ORCID,Przybylak Martyna1,Białas Wojciech1,Czaczyk Katarzyna1

Affiliation:

1. Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-624 Poznań, Poland

2. Department of Dairy and Process Engineering, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-624 Poznań, Poland

Abstract

1,3-propanediol (1,3-PD) has a wide range of industrial applications. The most studied natural producers capable of fermenting glycerol to 1,3-PD belong to the genera Klebsiella, Citrobacter, and Clostridium. In this study, the optimization of medium composition for the biosynthesis of 1,3-PD by Citrobacter freundii AD119 was performed using the one-factor-at-a-time method (OFAT) and a two-step statistical experimental design. Eleven mineral components were tested for their impact on the process using the Plackett–Burman design. MgSO4 and CoCl2 were found to have the most pronounced effect. Consequently, a central composite design was used to optimize the concentration of these mineral components. Besides minerals, carbon and nitrogen sources were also optimized. Partial glycerol substitution with other carbon sources was found not to improve the bioconversion process. Moreover, although yeast extract was found to be the best nitrogen source, it was possible to replace it in part with (NH4)2SO4 without a negative impact on 1,3-PD production. As a part of the optimization procedure, an artificial neural network model of the growth of C. freundii and 1,3-PD production was developed as a predictive tool supporting the design and control of the bioprocess under study.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3