A New Deep-Learning Method for Human Activity Recognition

Author:

Vrskova Roberta1ORCID,Kamencay Patrik1ORCID,Hudec Robert1ORCID,Sykora Peter1

Affiliation:

1. Department of Multimedia and Information-Communication Technologies, University of Zilina, 010 26 Zilina, Slovakia

Abstract

Currently, three-dimensional convolutional neural networks (3DCNNs) are a popular approach in the field of human activity recognition. However, due to the variety of methods used for human activity recognition, we propose a new deep-learning model in this paper. The main objective of our work is to optimize the traditional 3DCNN and propose a new model that combines 3DCNN with Convolutional Long Short-Term Memory (ConvLSTM) layers. Our experimental results, which were obtained using the LoDVP Abnormal Activities dataset, UCF50 dataset, and MOD20 dataset, demonstrate the superiority of the 3DCNN + ConvLSTM combination for recognizing human activities. Furthermore, our proposed model is well-suited for real-time human activity recognition applications and can be further enhanced by incorporating additional sensor data. To provide a comprehensive comparison of our proposed 3DCNN + ConvLSTM architecture, we compared our experimental results on these datasets. We achieved a precision of 89.12% when using the LoDVP Abnormal Activities dataset. Meanwhile, the precision we obtained using the modified UCF50 dataset (UCF50mini) and MOD20 dataset was 83.89% and 87.76%, respectively. Overall, our work demonstrates that the combination of 3DCNN and ConvLSTM layers can improve the accuracy of human activity recognition tasks, and our proposed model shows promise for real-time applications.

Funder

Slovak Research and Development Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3