New Multipath OLSR Protocol Version for Heterogeneous Ad Hoc Networks

Author:

Benjbara ChaimaeORCID,Habbani Ahmed,Mouchfiq Nada

Abstract

From a basic refrigerator to a self-driving car, emerging technologies are increasingly involving various facets of our daily lives. These bring together many regularly used devices, each with its own characteristics, to communicate and collaborate within the same system. Computer network experts regard this so-called structure as a heterogeneous network made up of several connected objects that do not speak the same language. Communication is therefore ensured by additional types of nodes, such as gateways or converters. In this case, we can detect an increased complexity and a decreased level of security. And thus, the need to adopt a common slang for these kinds of networks has been brought to life. In this work, we compare two different routing protocols: optimized link-state routing (OLSR) and the multipath heterogeneous ad hoc network OLSR (MHAR-OLSR). The latter is an OLSR extension with new functionalities: nodes identification, paths calculation, paths classification, and paths choice that we designed for heterogeneous ad hoc networks composed of MANET, VANET, and FANET devices; it ensures direct communication between these diverse components. We verify and explain all the elements of our solution using colored Petri nets. We also present a global evaluation of Packet Delivery Ratio (PDR), End-To-End Delay, and energy consumption as QoS measures with different numbers of nodes in a heterogeneous scenario. To do this, we use NS-3 and BonnMotion as a tool-set of simulation. Experimental results show improvement in performance when compared to the classical routing protocol.

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Reference46 articles.

1. Study of Ad hoc Networks with Reference to MANET, VANET, FANET;Krishna;Conf. Proc.,2017

2. Dynamic Routing for Flying Ad Hoc Networks

3. A Study of Ad-Hoc Network: A Review;Rani;Int. J. Adv. Res. Comput. Sci. Softw. Eng.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3