Towards a Lightweight Intrusion Detection Framework for In-Vehicle Networks

Author:

Basavaraj Dheeraj,Tayeb ShahabORCID

Abstract

With the emergence of networked devices, from the Internet of Things (IoT) nodes and cellular phones to vehicles connected to the Internet, there has been an ever-growing expansion of attack surfaces in the Internet of Vehicles (IoV). In the past decade, there has been a rapid growth in the automotive industry as network-enabled and electronic devices are now integral parts of vehicular ecosystems. These include the development of automobile technologies, namely, Connected and Autonomous Vehicles (CAV) and electric vehicles. Attacks on IoV may lead to malfunctioning of Electronic Control Unit (ECU), brakes, control steering issues, and door lock issues that can be fatal in CAV. To mitigate these risks, there is need for a lightweight model to identify attacks on vehicular systems. In this article, an efficient model of an Intrusion Detection System (IDS) is developed to detect anomalies in the vehicular system. The dataset used in this study is an In-Vehicle Network (IVN) communication protocol, i.e., Control Area Network (CAN) dataset generated in a real-time environment. The model classifies different types of attacks on vehicles into reconnaissance, Denial of Service (DoS), and fuzzing attacks. Experimentation with performance metrics of accuracy, precision, recall, and F-1 score are compared across a variety of classification models. The results demonstrate that the proposed model outperforms other classification models.

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Reference28 articles.

1. POSTER: Intrusion Detection System for In-vehicle Networks using Sensor Correlation and Integration;Li,2017

2. Machine Learning-Based Detection for Cyber Security Attacks on Connected and Autonomous Vehicles

3. Comparison of Machine Learning and Deep Learning Models for Network Intrusion Detection Systems;Thapa;Future Internet,2020

4. A Raspberry-Pi Prototype of Smart Transportation

5. A Data-Centric Approach to Taming the Message Dissemination in the Internet of Vehicles

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3