Using MPC to Balance Intermittent Wind and Solar Power with Hydro Power in Microgrids

Author:

Pandey MadhusudhanORCID,Winkler DietmarORCID,Sharma Roshan,Lie Bernt

Abstract

In a microgrid connected with both intermittent and dispatchable sources, intermittency caused by sources such as solar and wind power plants can be balanced by dispatching hydro power into the grid. Both intermittent generation and consumption are stochastic in nature, not known perfectly, and require future prediction. The stochastic generation and consumption will cause the grid frequency to drift away from a required range. To improve performance, operation should be optimized over some horizon, with the added problem that intermittent power varies randomly into the future. Optimal management of dynamic system over a future horizon with disturbances is often posed as a Model Predictive Control (MPC) problem. In this paper, we have employed an MPC scheme for generating a hydro-turbine valve signal for dispatching necessary hydro power to the intermittent grid and maintaining grid frequency. Parameter sensitivity analysis shows that grid frequency is mostly sensitive to the turbine valve signal. We have found that controller discretization time, grid frequency, and power injection into the grid are interrelated, and play an important role in maintaining the grid frequency within the thresholds. Results also indicate that the fluctuations in grid frequency are insignificant on the turbine valve position during power injection into the grid.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference27 articles.

1. Roadmap for Large-Scale Balancing and Energy Storage from Norwegian Hydropower: Opportunities, Challanges and Needs until 2050;Charmasson,2018

2. Norway as a Battery for the Future European Power System—Impacts on the Hydropower System

3. Balancing future variable wind and solar power production in Central-West Europe with Norwegian hydropower

4. Balancing of Variable Wind and Solar Production in Continental Europe with Nordic Hydropower – A Review of Simulation Studies

5. Challenges of integrating solar and wind into the electricity grid. Systems Perspectives on Renewable Power;Steen,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3