Modelling of a Flow-Induced Oscillation, Two-Cylinder, Hydrokinetic Energy Converter Based on Experimental Data

Author:

Lv Yanfang,Sun Liping,Bernitsas Michael M.,Jiang Mengjie,Sun Hai

Abstract

The VIVACE Converter consists of cylindrical oscillators in tandem subjected to transverse flow-induced oscillations (FIOs) that can be improved by varying the system parameters for a given in-flow velocity: damping, stiffness, and in-flow center-to-center spacing. Compared to a single isolated cylinder, tandem cylinders can harness more hydrokinetic energy due to synergy in FIO. Experimental and numerical methods have been utilized to analyze the FIO and energy harnessing of VIVACE. A surrogate-based model of two tandem cylinders is developed to predict the power harvesting and corresponding efficiency by introducing a backpropagation neural network. It is then utilized to reduce excessive experimental or computational testing. The effects of spacing, damping, and stiffness on harvested power and efficiency of the established prediction-model are analyzed. At each selected flow velocity, optimization results of power harvesting using the prediction-model are calculated under different combinations of damping and stiffness. The main conclusions are: (1) The surrogate model, built on extensive experimental data for tandem cylinders, can predict the cylinder oscillatory response accurately. (2) Increasing the damping ratio range from 0–0.24 to 0–0.30 is beneficial for improving power efficiency, but has no significant effect on power harvesting. (3) In galloping, a spacing ratio of 1.57 has the highest optimal harnessed power and efficiency compared with other spacing values. (4) Two tandem cylinders can harness 2.01–4.67 times the optimal power of an isolated cylinder. In addition, the former can achieve 1.46–4.01 times the efficiency of the latter. (5) The surrogate model is an efficient predictive tool defining parameters of the Converter for improved energy acquisition.

Funder

Natural Science Foundation of Heilongjiang Province

National Key Research and Development Program of China

U.S. Department of Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3