A Model-Based Sensor Fault Diagnosis Scheme for Batteries in Electric Vehicles

Author:

Yu QuanqingORCID,Wan Changjiang,Li Junfu,Xiong RuiORCID,Chen Zeyu

Abstract

The implementation of each function of a battery management system (BMS) depends on sensor data. Efficient sensor fault diagnosis is essential to the durability and safety of battery systems. In this paper, a model-based sensor fault diagnosis scheme and fault-tolerant control strategy for a voltage sensor and a current sensor are proposed with recursive least-square (RLS) and unscented Kalman filter (UKF) algorithms. The fault diagnosis scheme uses an open-circuit voltage residual generator and a capacity residual generator to generate multiple residuals. In view of the different applicable state of charge (SOC) intervals of each residual, different residuals need to be selected according to the different SOC intervals to evaluate whether a sensor fault occurs during residual evaluation. The fault values of the voltage and current sensors are derived in detail based on the open-circuit voltage residual and the capacity residual, respectively, and applied to the fault-tolerant control of battery parameters and state estimations. The performance of the proposed approaches is demonstrated and evaluated by simulations with MATLAB and experimental studies with a commercial lithium-ion battery cell.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3