Development of an Efficient Thermal Electric Skipping Strategy for the Management of a Series/Parallel Hybrid Powertrain

Author:

De Bellis VincenzoORCID,Malfi EnricaORCID,Zaccardi Jean-MarcORCID

Abstract

In recent years, the development of hybrid powertrain allowed to substantially reduce the CO2 and pollutant emissions of vehicles. The optimal management of such power units represents a challenging task since more degrees of freedom are available compared to a conventional pure-thermal engine powertrain. The a priori knowledge of the driving mission allows identifying the actual optimal control strategy at the expense of a quite relevant computational effort. This is realized by the off-line optimization strategies, such as Pontryagin minimum principle—PMP—or dynamic programming. On the other hand, for an on-vehicle application, the driving mission is unknown, and a certain performance degradation must be expected, depending on the degree of simplification and the computational burden of the adopted control strategy. This work is focused on the development of a simplified control strategy, labeled as efficient thermal electric skipping strategy—ETESS, which presents performance similar to off-line strategies, but with a much-reduced computational effort. This is based on the alternative vehicle driving by either thermal engine or electric unit (no power-split between the power units). The ETESS is tested in a “backward-facing” vehicle simulator referring to a segment C car, fitted with a hybrid series-parallel powertrain. The reliability of the method is verified along different driving cycles, sizing, and efficiency of the power unit components and assessed with conventional control strategies. The outcomes put into evidence that ETESS gives fuel consumption close to PMP strategy, with the advantage of a drastically reduced computational time. The ETESS is extended to an online implementation by introducing an adaptative factor, resulting in performance similar to the well-assessed equivalent consumption minimization strategy, preserving the computational effort.

Funder

H2020 European Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3