Abstract
In boilers operating in modern power plants, thick-walled elements of complex shapes, such as valves, superheater headers, T-pipes, Y-pipes, four-way pipes, and elbows, are especially prone to fatigue processes. Higher operation parameters and more frequent startups may speed up fatigue damage in these elements. Such damage is a local phenomenon and is caused by thermomechanical fatigue (TMF). This paper presents a method designed for predicting the behavior of components subjected to variable temperature and mechanical loading conditions. This method combines the results of measurements of operating parameters of devices under industrial conditions with those obtained using finite element modeling (FEM). Particular attention was given to the influence of the time-dependent heat transfer coefficient on the local thermomechanical stress–strain behavior of the material. It was stated that heat transfer conditions have a significant impact on local transient stresses and depend on the operation parameters of boilers. Consistency of the temperature changes as a function of time, determined in industrial conditions and calculated on the basis of the model approach, was obtained. This developed and described in the work approach enables defining the conditions of heat transfer on the surface of models of considered components.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference28 articles.
1. Water-Tube Boilers and Auxiliary Installations—Part 3: Design and Calculation for Pressure Parts of the Boilerhttps://standards.iteh.ai/catalog/standards/cen/c38172c0-fb47-4bac-b3d9-6550ae2201da/en-12952-3-2011
2. Development of life assessment procedures for power plant headers operated under flexible loading scenarios
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献