Dyadic Helmholtz Green’s Function for Electromagnetic Wave Transmission/Diffraction through a Subwavelength Nano-Hole in a 2D Quantum Plasmonic Layer: An Exact Solution Using “Contact Potential”-like Dirac Delta Functions

Author:

Miessein DésiréORCID,Horing Norman J. M.,Lenzing Harry

Abstract

The dyadic Helmholtz Green’s function for electromagnetic (EM) wave transmission/ diffraction through a subwavelength nano-hole in a two-dimensional (2D) plasmonic layer is discussed here analytically and numerically, employing “contact potential”-like Dirac delta functions in 1 and 2 dimensions (δ(z) and δ(x)δ(y)≡δ(2)(r→)). This analysis is carried out employing a succession of two coupled integral equations. The first integral equation determines the dyadic electromagnetic Green’s function G^fs for the full non-perforated 2D quantum plasma layer in terms of the bulk 3D infinite-space dyadic electromagnetic Green’s function G^3D, with δ(z) representing the confinement of finite quantum plasma conductivity to the plane of the plasma layer at z=0. The second integral equation determines the dyadic electromagnetic “hole” Green’s function G^hole for the perforated 2D quantum plasma layer (containing the nano-hole) in terms of the dyadic electromagnetic Green’s function G^fs for the full non-perforated 2D plasma layer, with δ(2)(r→) describing the exclusion of the quantum plasma layer conductivity properties from the nano-hole region in the vicinity of r→=0 on the plane. Taking the radius of the subwavelength nano-hole to be the smallest length scale of the system in conjunction with the 2D Dirac delta function representation of the excluded nano-hole plasma conductivity, both of the successive coupled integral equations are solved exactly, and we present a thorough numerical analysis (based on the exact analytic solution) for the resulting dyadic “hole” Green’s function G^hole in full detail in both 3D and density plots. This result has been successfully applied to the determination of electromagnetic wave transmission/diffraction through the nano-hole of the perforated quantum plasmonic layer, jointly with the EM wave transmission through the rest of the plasma layer. This success necessarily involves spatial translational asymmetry induced by the use of spatial Dirac delta functions confining finite conductivity to the 2D quantum plasma sheet and the excision at a bit of it about the origin to represent the nano-hole perforation, thus breaking spatial translational invariance symmetry.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3