Differential Response to Cytotoxic Drugs Explains the Dynamics of Leukemic Cell Death: Insights from Experiments and Mathematical Modeling

Author:

Guzev Ekaterina,Bunimovich-Mendrazitsky SvetlanaORCID,Firer Michael A.ORCID

Abstract

This study presents a framework whereby cancer chemotherapy could be improved through collaboration between mathematicians and experimentalists. Following on from our recently published model, we use A20 murine leukemic cells transfected with monomeric red fluorescent proteins cells (mCherry) to compare the simulated and experimental cytotoxicity of two Federal Drug Administration (FDA)-approved anticancer drugs, Cytarabine (Cyt) and Ibrutinib (Ibr) in an in vitro model system of Chronic Lymphocytic Leukemia (CLL). Maximum growth inhibition with Cyt (95%) was reached at an 8-fold lower drug concentration (6.25 μM) than for Ibr (97%, 50 μM). For the proposed ordinary differential equations (ODE) model, a multistep strategy was used to estimate the parameters relevant to the analysis of in vitro experiments testing the effects of different drug concentrations. The simulation results demonstrate that our model correctly predicts the effects of drugs on leukemic cells. To assess the closeness of the fit between the simulations and experimental data, RMSEs for both drugs were calculated (both RMSEs < 0.1). The numerical solutions of the model show a symmetrical dynamical evolution for two drugs with different modes of action. Simulations of the combinatorial effect of Cyt and Ibr showed that their synergism enhanced the cytotoxic effect by 40%. We suggest that this model could predict a more personalized drug dose based on the growth rate of an individual’s cancer cells.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3