Compressed-Encoding Particle Swarm Optimization with Fuzzy Learning for Large-Scale Feature Selection

Author:

Yang Jia-Quan,Chen Chun-Hua,Li Jian-YuORCID,Liu DongORCID,Li Tao,Zhan Zhi-HuiORCID

Abstract

Particle swarm optimization (PSO) is a promising method for feature selection. When using PSO to solve the feature selection problem, the probability of each feature being selected and not being selected is the same in the beginning and is optimized during the evolutionary process. That is, the feature selection probability is optimized from symmetry (i.e., 50% vs. 50%) to asymmetry (i.e., some are selected with a higher probability, and some with a lower probability) to help particles obtain the optimal feature subset. However, when dealing with large-scale features, PSO still faces the challenges of a poor search performance and a long running time. In addition, a suitable representation for particles to deal with the discrete binary optimization problem of feature selection is still in great need. This paper proposes a compressed-encoding PSO with fuzzy learning (CEPSO-FL) for the large-scale feature selection problem. It uses the N-base encoding method for the representation of particles and designs a particle update mechanism based on the Hamming distance and a fuzzy learning strategy, which can be performed in the discrete space. It also proposes a local search strategy to dynamically skip some dimensions when updating particles, thus reducing the search space and reducing the running time. The experimental results show that CEPSO-FL performs well for large-scale feature selection problems. The solutions obtained by CEPSO-FL contain small feature subsets and have an excellent performance in classification problems.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference36 articles.

1. Feature selection methods and algorithms;Ladha;Int. J. Comput. Sci. Eng.,2011

2. A survey on feature selection methods

3. A Survey on Evolutionary Computation Approaches to Feature Selection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3