Lifetime and Dynamics of Natural Orbits around Titan

Author:

Ferreira Lucas S.ORCID,Sfair RafaelORCID,Prado Antônio F. Bertachini A.ORCID

Abstract

Considering the growing interest in sending probes to the natural satellite Titan, our work aims to investigate and map natural orbits around this moon. For that, we use mathematical models with forces that have symmetry/asymmetry phenomena, depending on the force, applied to orbits around Titan. We evaluated the effects due to the gravitational attraction of the Saturn, together with the perturbative effects coming from the non-sphericity of Titan (the gravitational coefficient J2) and the effects of the atmospheric drag present in the natural satellite. Lifetime maps were generated for different initial configurations of the orbit of the probe, which were analyzed in different scenarios of orbital perturbations. The results showed the existence of orbits surviving at least 20 years and conditions with shorter times, but sufficient to carry out possible missions, including the important polar orbits. Furthermore, the investigation of the oscillation rate of the altitude of the probe, called coefficient Δ, proposed in this work, showed orbital conditions that result in more minor oscillations in the altitude of the spacecraft.

Funder

RUDN University Strategic Academic Leadership Program

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Orbital maneuvers for a space probe around Titania;The European Physical Journal Special Topics;2023-12

2. Searching for orbits to observe Iapetus;The European Physical Journal Special Topics;2023-12

3. Analysis of the natural orbits around Io;Celestial Mechanics and Dynamical Astronomy;2023-08-31

4. Science Orbits with an Inner Disturbing Body and an Outer Disturbing Body;Journal of Guidance, Control, and Dynamics;2023-06

5. Special Issue: Advances in Mechanics and Control;Symmetry;2023-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3