CLHF-Net: A Channel-Level Hierarchical Feature Fusion Network for Remote Sensing Image Change Detection

Author:

Ma JinmingORCID,Lu Di,Li Yanxiang,Shi Gang

Abstract

Remote sensing (RS) image change detection (CD) is the procedure of detecting the change regions that occur in the same area in different time periods. A lot of research has extracted deep features and fused multi-scale features by convolutional neural networks and attention mechanisms to achieve better CD performance, but these methods do not result in well-fused feature pairs of the same scale and features of different layers. To solve this problem, a novel CD network with symmetric structure called the channel-level hierarchical feature fusion network (CLHF-Net) is proposed. First, a channel-split feature fusion module (CSFM) with symmetric structure is proposed, which consists of three branches. The CSFM integrates feature information of the same scale feature pairs more adequately and effectively solves the problem of insufficient communication between feature pairs. Second, an interaction guidance fusion module (IGFM) is designed to fuse the feature information of different layers more effectively. IGFM introduces the detailed information from shallow features into deep features and deep semantic information into shallow features, and the fused features have more complete feature information of change regions and clearer edge information. Compared with other methods, CLHF-Net improves the F1 scores by 1.03%, 2.50%, and 3.03% on the three publicly available benchmark datasets: season-varying, WHU-CD, and LEVIR-CD datasets, respectively. Experimental results show that the performance of the proposed CLHF-Net is better than other comparative methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3